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Table 4. Fourier coefficients for the positional param- 
eters ( × 104) defined by ( 1 ) 

The center of mass is denoted by G, and 0 and ~ are the polar and azimuth 

S 
S 
C 
C 
NI 
NI 
N2 
N2 

angles (°) of the molecular direction. 

Mean A, 
x -983 0 
y 658 0 
z 0.0 - I . 8  
0 90.0 0.77 
~0 -25.43 0 
x 1146 0 
y -81 0 
x -1687 0 
y 894 0 
x -2795 26 
y 1279 -5 
x -2795 -26 

1279 5 .P 

Bl A2 B2 A3 
-248 4 0 0 

194 12 0 0 
0 0 -O-3 -O.7 
0 0 -0-24 0.01 
6.55-0.02 0 0 

-132 17 0 0 
370 8 0 0 

-282 3 0 0 
133 13 0 0 

-362 6 -4 1 
29 22 -2 3 

-362 6 4 -1 
29 22 2 -3 

B3 A4 B4 
-33 I 0 

3 5 0 
0 0 -0-3 
0 0 0.21 
0.57 -0.38 0 

-12 8 0 
21 -6  0 

-27 5 0 
1 11 0 

-44 -2 17 
-12 7 9 
-44 - 2 - 17 
-12 7 -9 

the same modulation. If the modulation wavenumber is 
not just ~c 0~ *, then the modulation is incommensurate 
and the displacement pattern changes from that of 
model 1 to model 2 along the c axis with a long period. 

If we regard this ninefold superstructure as an 
'incommensurate' one, then the local structure around 
z =¼ and ~ corresponds to 'almost commensurate' 
regions (microdomains of ferroelectric phase I, the 
polar sense changing alternately along the b axis), 
which are separated by 'discommensurations' (or 
domain walls) around z = 0 and ½. It should be noted 
that the discommensuration width is about two basic 
cell dimensions in thiourea. 

The authors wish to thank Mr S. Takagi and Mr Y. 
Yoshida for their help in computer calculations. This 
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Abstract 

Two recent attempts to derive quantitative energy 
relationships from statistical analysis of structural 
parameters observed in different crystal environments 
are examined. Both are based on the assumption of a 
Boltzmann-like distribution for the probability of a 
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structure being observed in a deformed state. This 
assumption is shown to be untenable. An alternative 
model taking explicit account of the perturbing forces 
responsible for structural deformation is then con- 
sidered. Although low-energy regions of molecular 
potential energy surfaces can certainly be recognized 
and mapped from distributions of observed structures, 
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the derivation of quantitative energy relationships from 
statistical analysis alone is not possible without intro- 
ducing arbitrary and unwarranted assumptions. 

Introduction 

The structure of a molecule in a crystal environment is 
not necessarily identical with the equilibrium structure 
of the isolated molecule, i.e., the forces exerted on a 
molecule by its environment in a crystal can deform it 
to a greater or lesser extent. In general, stiff structural 
parameters (such as bond lengths) will hardly change 
from one environment to another, whereas soft con- 
formational parameters will show a greater variability. 
Studies of the structural variability of molecules and 
molecular fragments in different crystal environments 
thus lead to the mapping of low-energy molecular 
deformation paths, which can often serve as useful 
models for chemical reaction paths (for a review see 
B/irgi & Dunitz, 1983). In this article we discuss two 
recent attempts to derive more quantitative energy 
relationships by statistical analysis of observed struc- 
tural variability and show that both are untenable. We 
then consider an alternative approach to this type of 
problem and draw some conclusions from it. 

Models based on Boltzmann-like distributions 

In their recent statistical analysis of the flexible furanose 
ring, Bartenev, Kameneva & Lipanov (1987) introduce 
quantitative energy considerations by assuming that the 
probability W c of a structure being observed in a 
deformed state is determined by the free-energy 
difference AG between the deformed and energetically 
optimal conformation of an isolated molecule. They 
assume a Boltzmann-like distribution Wa=exp(-AG/  
RTc) where RTc characterizes the 'mean energy of 
deformation due to intermolecular interactions in 
crystals, by analogy with the probability exp(-AG/R T) 
of the deformed conformation being realized in solu- 
tion because of thermal motion with the mean energy 
RT.' From a statistical analysis of the distribution of 
about 250 observed furanose conformations in a variety 
of nucleoside and nucleotide crystals and fitting to the 
above type of expression with T =  300 K, Bartenev, 
Kameneva & Lipanov derive a barrier of 13.8 kJ mol- 
for interconversion of the C2'-endo and C3'-endo 
conformations along the pseudorotation pathway. This 
is lower than the barrier estimated by NMR 
(18.8 kJ mol-1), so these authors then argue that the 
appropriate value of T~ in the expression for W o 'must 
be higher than room temperature to allow the process of 
crystallization'. From comparison of the two barriers, 
they suggest that T~ should be taken as about 
1.4 x 300 K. 

Two questions immediately arise. Has the assump- 
tion of a Boltzmann-like distribution any serious 

foundation in this context? And if so, what is the 
appropriate value of T? (There is ample evidence 
that molecular structural parameters are practically 
independent of the temperature of observation or of 
crystallization.) In order to discuss these questions we 
rephrase slightly some of the underlying assumptions in 
a form originally proposed by Murray-Rust (1982) and 
reduce the problem for simplicity to that of a 
distribution involving a single structural parameter x 
with mean value (x)  and variance o2(x). If the 
distribution is normal, the probability of observing a 
particular deformation x - ( x )  is 

P(x) ~ expl-(x-(x))2/2o2(x)l.  (1) 

It is then assumed that the probability of observing a 
particular deformation decreases exponentially with the 
deformation energy AG (or E), which can be taken, for 
small deformations at least, as a quadratic function of 
x - ( x ) ,  leading to 

P'(x) ~ exp[-k(x-(x))2/2Ec], (2) 

where E c is a constant to be determined, not nec- 
essarily RT as in the Boltzmann distribution. On the 
basis of the similarity of (1) and (2) the conclusion is 
drawn that the variance of x is inversely proportional to 
the force constant: 

o2(x) = Ee/k. (3) 

Murray-Rust (1982) found that torsional force con- 
stants for various types of C(sp2)-X bonds could be 
related to statistically determined variances with a 
single value of E c, approximately 0 . 6 3 k J m o l - '  
(0-15 kcal mol-'), which is described as 'the average 
amount of energy available from packing forces to 
distort a functional group'. Bartenev, Kameneva & 
Lipanov (1987) identify Ec with RT~, and their value 
(approximately 3.5 kJ mol-l) is obviously much larger 
than Murray-Rust's. There seems no reason to suppose 
that E c is constant for different types of deformation or 
that it has anything to do with the ambient temperature 
or with the temperature of crystallization. A n ensemble 
of structural parameters obtained from chemically 
different compounds in different crystal structures does 
not even remotely resemble a closed system at thermal 
equilibrium and does not therefore conform to the 
conditions necessary for the application of the 
Boltzmann distribution. It is thus misleading to draw 
an analogy between this distribution and those derived 
empirically from statistical analysis of observed de- 
formations in crystals. Hence, there is no justification 
for (3), and, more generally, there seems to be no way 
of deriving absolute energies (or temperatures) from 
purely geometric structural data devoid of an energetic 
context. 

Note added in proof: The same criticism can be 
directed at the arguments used in the recent paper by 
Lesyng, Jeffrey & Maluszynska (1988), who assume 
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that hydrogen-bond-length distributions observed in 
crystal structures of nucleic acid components have a 
Boltzmann-like dependence on temperature. 

Molecular deformations and perturbing forces 

What can be done? We consider here a simple physical 
model that furnishes an alternative relationship between 
a2(x) and k for a structural parameter x with equilib- 
rium value x o in the absence of perturbing forces. 
The crystal environment is supposed to exert some 
perturbing force a on the system, so that the linearly 
perturbed energy becomes: 

E(x) = k ( x - x  f f  /2 + a(X-Xo). 

The new equilibrium value x e is thus displaced to 

X e = X 0 - -  a/k. 
Each crystal environment can be expected to exert a 
different perturbing force, and for a collection of such 
environments there will be some distribution P(a), 
which could well be supposed to be normal (since it 
results from a large number of independent causes). 
Whatever the type of distribution, 

P ( a / k )  = P ( x  e - -  Xo)  , 

that is, the distribution of a determines the distribution 
of x~. In particular, for ( a ) =  0, (Xe)= (Xo). This 
model leads to the relationship 

1 7 2 ( X e -  Xo) = 0 2 ( a ) / k  2, 

in contrast to (3) where the parameter variance was 
proportional to k -~ rather than to k -2. Qualitatively 
there is an inverse relationship for both models. The 
force constant can only be determined from (6) if o2(a) 
is known, and this will seldom be the case. Hence the 
actual deformation energies cannot, in general, be 
derived from the observed parameter variances. Note 
that (6) does not refer directly to energy but rather to a 
ratio of two energy-related quantities, a force and a 
force constant. 

The model can be extended to cover a multi- 
dimensional distribution involving several different 
structural parameters (interatomic distances, bond 
angles, torsion angles, etc.) by rewriting (4)--(6) in 
appropriate form: 

E(x) = ( x -  x o ) r F ( x -  Xo)/2 + a r ( x -  Xo) 

P ( x  e - x o) : P ( F - l a )  = P(Ca)  

provides a conceptual basis for relating observed 
distributions P(x e - x  o) to the energy surfaces 
associated with small Xe, but its actual application is 
beset with obstacles. 

The variance-covariance matrix ((Xe-Xo)(X e -  
Xo) r) may be heavily contaminated by contributions 
from experimental error. Indeed, for small deforma- 
tions and poor experimental data, it could be dominated 
by the experimental uncertainties. On the other hand, 
for very large deformations the quadratic energy 
dependence implied by (7) cannot be expected to hold. 
Once the harmonic approximation breaks down 
equations (7), (8) and (9) would need to be replaced by 
more complicated expressions involving a larger num- 

(4) ber of unknown (anharmonic) force constants. 
Even if these equations are assumed to be valid, the 

variance-covariance matrix ((x~-Xo)(X e -  Xo) T) can- 
not, in general, be resolved into C and (aar).  However, 
if sufficient information about the force constants 
F ( = C - 0  were available, (7) could be used to obtain the 
perturbing forces a for each observed crystal environ- 
ment separately. For a sufficiently large sample of 
different environments, (aa r) could be calculated and 
its dependence on crystal environment studied. Con- 
versely, the compliance matrix C could be derived if 

(5) (aa r) were known. 
Clearly we cannot possibly be expected to know 

these quantities. The distribution of forces could be 
different for different kinds of structural parameter and 
is likely to depend in a complex way on the types of 

(6) interaction (van der Waals, hydrogen bond, ionic 
forces) operative in the selection of crystal structures 
included in the investigation. The detailed analysis of 
these forces for a statistically significant sample of 
structures would be extremely laborious and could 
hardly be free from assumptions about the natures and 
magnitudes of these interactions. 

To enable any progress to be made, drastic simpli- 
fications are necessary. For example, in the struc- 
ture-correlation method (Murray-Rust, Biirgi & Dunitz, 
1975, 1978; Bfirgi & Dunitz, 1983) it is assumed that 
the second moments of the observed distribution 
P(xe-xo)  will tend to be small in directions of large 
increase of potential energy. In terms of (9) this is 
equivalent to the assumption that the second-moment 
matrix (aa r) can be approximated by a single pro- 
portionality constant, i.e., that the off-diagonal terms of 

(7) (aa r) are essentially zero and that the diagonal terms 
(8) do not differ too much among themselves. 

( (X  e - -  Xo)(X e - -  Xo) T )  = C ( a a  r )  C r. (9)  

The left-hand side of expanded equation (6) involves the 
variance-covariance matrix of the observed distri- 
bution of structural parameters, and the right-hand side 
involves the compliance matrix C = F -1 for the system 
in question as well as (aar),  the second-moment matrix 
of the distribution of perturbing forces. This model 

Conclusions 

Structural deformations of molecules or molecular 
fragments in crystals depend on the particular per- 
turbations operating in the individual crystal environ- 
ments, as well as on the restoring forces. Absolute 
deformation energies cannot be derived from structural 
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data alone without introducing arbitrary and un- 
warranted assumptions. However, observed distribu- 
tions of structural parameters found in different crystal 
environments do provide qualitative information about 
the shapes of low-energy regions of potential energy 
surfaces and can thus be related to ratios of cor- 
responding restoring forces. We have outlined a general 
scheme indicating how this information might be 
obtainable. 

Perhaps a parallel can be drawn with molecular 
mechanics models, widely used for estimating struc- 
tural and energetic properties of molecules. These are 
just more or less elaborate schemes of representing 
inter- and intramolecular perturbations on a standard 
fragment characterized by a standard geometry and a 
standard force field. As far as the structures alone are 

concerned, the force constants may be scaled upward 
or downward without change; it is only their ratios that 
matter. 

References 

BARTENEV, V. N., KAMENEVA, N. G. & LIPANOV, A. A. (1987). 
Acta Co'st. B43, 275-280. 

BORGI, H. B. & DUNITZ, J. D. (1983). Acc. Chem. Res. 16, 
153-161. 

LESYNG, B., JEFFREY, G. A. & MALUSZYNSKA. H. (1988). Acta 
Crvst. B44, 193-198. 

MURRAY-RUST. P. (1982). Molecular Structure and Biological 
Activity, edited by J. F. GRIFFIN & W. L. DUAX. pp. 117-133. 
New York: Elsevier. 

MURRAY-RUST, P., BORGI, H. B. & DUNITZ, J. D. (1975). J. Am. 
Chem. Soc. 97, 921-922. 

MURRAY-RUST, P.. BORGI. H. B. & DUNITZ, J. D. (1978). Acta 
Co'st. B34, 1793-1803. 

S H O R T  C O M M U N I C A T I O N  

Contributions intended for publication under this heading should be expressly so market# the)' should not exceed about 1000 
words; they should be forwarded in the usual way to the appropriate Co-editor; the)' will be published as speedily as 
possible. 

Acta Cryst. (1988). B44, 448 
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Druckfehlerberiehtigung. Von WOLVOANC WXLLINO und ULRICH MULLER, Fachbereich Chemic der Unieersith't 

Marburg, Hans-Meerwein-Strasse, D-3550 Marburg, Bundesrepublik Deutschland 

(Eingegangen am 5. April 1988) 

Abstract 

Printer's errors in the article by Willing & Mfiller [Acta 
Cryst. (1988), B44, 1-6] are corrected. On page 2, the 
second sentence of the second paragraph should read: 'Wir 
betrachten nur intermolekulare Wechselwirkungen, die inter- 
atomaren Potentiale innerhalb eines Molekiils werden nicht 

0108-7681/88/040448-01503.00 

berficksichtigt'. In the bottom right of Fig. 1, the height of the 
layers, reading from top to bottom, should be: 3/4, 1/4 and 
-1 /4 .  

Alle Daten sind in der Zusammenfassung gegeben. 
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